
Boundary terms in the Schwinger-DeWitt expansion: flat space results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 L173

(http://iopscience.iop.org/0305-4470/11/8/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 11, No. 8, 1978. Printed in Great Britain 

LETTER TO THE EDITOR 

Boundary terms in the Schwinger-DeWitt expansion: flat 
space results 

Gerard Kennedy 
Department of Theoretical Physics, The University of Manchester, Manchester M13 9PL, 
UK 

Received 19 June 1978 

Abstract. Asymptotic expansions for the Green function of the diffusion equation are 
obtained for both hyperspherical and arbitrarily shaped smooth boundaries in a flat 
embedding space. 

1. Introduction 

The role of boundary contributions to the asymptotic expansion of the integrated 
kernel of the diffusion equation, K ( t ) ,  for a manifold A with boundary 8.44 has 
recently been emphasised in separate contexts (Christensen and Duff 1978, Dowker 
and Kennedy 1978). The present interest in this expansion lies in the domain of 
quantum field theory where it is commonly known as the (integrated) Schwinger- 
DeWitt proper-time expansion, obtained from K ( t )  by rotating f to ir, r being the 
proper-time parameter. In this Letter we give the first few terms in the K ( t )  expan- 
sion for the special case of higher-dimensional spheres, and also obtain dimension- 
independent results for the first few coefficients in the expansion valid for an arbitrary 
smooth boundary in a flat embedding space. Dirichlet boundary conditions are 
considered throughout. 

2. General expressions for the boundary terms 

The Green function for the diffusion equation K(x,  x ’ ;  t) on a (p + 2)-dimensional 
manifold with positive definite metric g,, is defined by 

( -+)K(x,x‘;  t ) = S ( t ) S ( x , x ’ )  (1 1 
where 

is the (p + 2)-dimensional Laplace-Beltrami operator and S(x ,  x ‘ )  is the covariant S 
function. The solution to (1) depends of course on the boundary conditions employed 
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but, as has been shown by Greiner (1971), the integrated Green function 

K ( t ) = l  K(x,x ; t )dV,  
"U 

where d V is the volume form on 4, has the asymptotic expansion as t -* 0 

1 Crt'CES, 
1 

K ( t ) =  
(4.rrf)4pc' f = 0 . ~ , 1  .... 

ES representing terms exponentially small as t +O. The cf in this expansion may be 
written (Greiner 1971) as a volume part plus a boundary part 

the al(x, x ' )  being the usual Minakshisundaram coefficients for the manifold without 
boundary, and d u  the volume form on &U. Further comments on these coefficients 
may be found in Dowker and Kennedy (1978), but here we concentrate our attention 
on the boundary contributions in (4). 

Since K ( t )  is a dimensionless scalar and the bl must take the form of integrals over 
8 4  of certain invariants on 134, we can immediately deduce that bo = 0. On restricting 
our discussion to the case of a flat embedding space we can, for 1 a$, construct 
invariants using the second fundamental form, Kii, on ad and the intrinsic curvature, 
R ,  of 8 4  to give the general expressions 

[az(tr K)3+@z(tr K3)+yz(tr K)(tr K2)+SzR(tr K ) + E z R & ~ ~ ]  d u  ( 5 4  

where R = Ri' and tr K = K:. The relations 

R = (tr K)' - (tr K') 
RiJ" = (tr K)(tr Kz)- (tr K 3 ) ,  

valid for a flat Jt( (Eisenhart 1926), reduce equations (5c), ( 5 d )  to 

[a;(tr K)3+Pk(tr K3)+y;(tr K)(tr KZ)] du. 
bZ = J,, 
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For a flat A we also have al = 0, 1 # 0, and a. = 1.441, the volume of A. From (3) 
and (4) the K ( t )  expansion then takes the form 

+ K ' ( t )  
(4 7rt)i P+l 

(4 4' p+ I =!, 1.2,. . . 

K ( t ) =  

1 b l t ' + ~ ~ .  
1 

K'( t )  = 

The object would now be to fix the coefficients in equations (5a), (5b), (5c' ) ,  and (5d' )  
by calculating K ( t )  either for explicitly soluble examples or directly for an arbitrarily 
shaped boundary. Both forms of approach are taken in the following two sections. 

3. Results for higher-dimensional spheres 

In this section we draw on the work of Stewartson and Waechter (1971) and of 
Waechter (1972). Taking the Laplace transform of K ( t )  

aD 

R(s2)= 5 e-"'K(t) dt  (8 1 
0 

and using the properties of hyperspherical harmonics (Magnus and Oberhettinger 
1948, ErdClyi 1953), the usual spherical harmonics being included as a special case, 
we find, omitting the details, for SP+' of radius a bounding Rpf2 

2 (m+ip)(m+p-l)! R'(s2)= -a 1 f(m + ip ; sa 1, 
m=O p!m! (9) 

the prime denoting the separating off of the Weyl term as in (7a) and f(m +ip; sa) 
being the same combination of Bessel functions as encountered by Stewartson and 
Waechter (1971), 

(10) 
IL(sa) 

I , , (sa)K,(sa)-I:(sa)K:(sa)--  saI,(sa)' 

An expansion for f(v;sa) valid for large s is given in Stewartson and Waechter 
(1971), and is used in (9) after replacement of the sum by a contour integration to give 
an asymptotic expansion for R'(s2). Taking the inverse Laplace transform then yields, 
on neglecting terms exponentially small as t -* 0, 

p = l  + ~ ( t ~ / ~ )  
t -- a 2  a 1 2t1j2 K'( r )=- -+  2 - - -  

4t 37r' t 48 3 1 5 1 ~ " ~ ~  960a2 
7r 1/2 a 3 a 2  117r1/2a 1 357r'/2t1/2 

p = 2  K'( t )=  -T+-- 16t3 8t 512t'/2 -180- 216a + 00) 

p = 3  K ' ( t )  = -- a4 a3  a2 4a 17 +O(t1/2) ( l l c )  24t2+97r1/2t3/2-%- 9451r'/~t '/~+11520 

7r1/2a5 5a4 21597r1/2a 
K'( t )=  -./+-- 12 3/2 + 19 1/2  +O(l). (1 1 4  2't5 192r2 3 . 2  t 3 . 2  t 

p = 4  

We note in particular that, from (76) and (l ld),  b2= 0 for an S5 boundary in R6. 
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Although the calculation of ( l l a )  essentially follows the same treatment as 
Waechter (1972) we obtain different results for b 3 / 2 ,  b2, and b 5 / 2 ,  in particular we do 
not find b 3 / 2  = 0 for an S 2  boundary. The source of the discrepancy lies in a contribu- 
tion from a series of exponentials in the expansion of tan TU, a factor which appears in 
the conversion of the summation in (9) to a contour integration for the p = 1 case. 

The results in equations (11) could be used to fix the coefficients in § 2 but we 
prefer to do this by a more direct approachin the following section. 

4. Expansion for an arbitrary smooth boundary 

We again draw on the work of Stewartson and Waechter (1971) and more especially 
Waechter (1972) in this section. 

Let ( x ,  y ,  . . . , z) be a (p + 2)-dimensional Cartesian coordinate system, the x = O  
hypersurface being the tangent plane at some point P on aA with coordinates 
(0, yo ,  , . . , zo). The equation of the boundary aA can then be expanded as a Taylor 
series about P 

x = aij(qi -4L)(4’-4’0)+(Yijk(qi -4b)(4’-4’0)(4k -4;) 

+ aijkl(4’ -4b )(4’ - 4’0 )(4 - q ;  )(q‘ - 4b )+ - 40)5] (12) 

where the cy coefficients are expressible in terms of the second fundamental form and 
4’ is one of (y, . . . , z ) .  

Defining R‘”(x,  x ’ ;  s 2 )  through 

R‘”) (x ,  x ’ ;  s 2 ) =  e - s 2 r t u - 1 K ( x ,  x ’ ;  t) dt 

and using the expression for K ( x ,  x ’ ;  r )  for the manifold without boundary 

where 
Rx-x~.y--y’  ...., z - -I*  = [ ( x - x ’ ) ~ + ( Y - Y ’ ) ~ + .  . .+(z-z I 2  ) ] 1 / 2  , 

we can write 

sp -2u+2  
u+l)(R (-00 ,v- l lo , . . . . r -co )  - - 2P/2+v*P/2+1 ?I2- p - u + l  

~ ~ d - ~ o . s - l O . . . . . r - r o ~ ~  
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In (15) we have used the notation E = ( ( ,  q,. . . , p) ,  where the (6, q,. . . , p )  coor- 
dinates are related to the (x ,  y, . . . , z )  coordinates through 

($577, * * * , p ) = s S x ,  y ,  * * * 9 z ) ,  (16) 

and K v ( z )  is the modified Bessel function of the second kind. The form of equation 
(15) is an extension of the usual method of images to include, besides the image charge 
at (-60,770, . . . , PO), a dipole distribution of density f ( ~ ,  f ;  . , . , p ; s) over the 6 = 0 
hypersurface. 

The introduction of the t” - l  factor in (13) is necessitated by the fact that, since 
K ( x , x ’ ;  t) contains inverse powers of t as in equation (14), the formal Laplace 
transform (13) with U = 1 is undefined. When working with the Laplace transform 
parameter s2 this problem manifests itself in the form of divergent integrals accom- 
panying those terms which correspond, under inversion of the Laplace transform, to 
inverse powers of t. The t ” - l  factor is similar to that employed in zeta function 
regularisation (Dowker and Critchley 1976): we assume Re U > $ p  + 1 until the inverse 
Laplace transform has been taken and then let U + 1, the divergences neatly cancelling 
out. 

The scaled coordinates (16) may be substituted in (12) to obtain the equation of 
the boundary as a power series in l / s .  The f ( ~ ,  l, . . , , p ; s) is also written as a power 
series in s, the requirement that (15) vanish on a& giving the coefficients in this series. 
Inserting this information back in (15), setting g?= go and integrating over &, taking 
the inverse Laplace transform and finally letting U + 1 yields a K ( t )  expansion in the 
form of equations (7) with dimension-independent coefficients b112, bl,  b312, b2. 
Omitting the details, we find after some heavy algebra: 

1 / 2  

b1/2 = -- = l a d l  (17a) 2 

bl = f (tr K) d a  

[10(tr K2)-7( t r  K ) 2 ]  d a  

[5(tr q 3 + 4 0 ( t r  K3)-33(tr K)(tr K 2 ) ]  da. ( 1 7 4  

The results obtained by this direct approach are of the form suggested in § 2, and, 
as is easily verified from equations (7), the resultant K ( t )  expansion agrees with all the 
higher-dimensional sphere results of equations (1 1) and also with the expansion for S1 
bounding R 2  given by Stewartson and Waechter (1971). Equations (17a) and (176) 
agree with the more general curved space expansion of McKean and Singer (1967) but 
again we find disagreement with Waechter’s (1972) result for b 3 l 2 ,  proved by him for 
p = 1 and quoted by us in a previous paper (Dowker and Kennedy 1978). 

5. Discussion 

Although our treatment of boundary terms has so far been restricted to the case of a 
flat embedding space, where they find an application in the Casimir effect (Dowker 
and Kennedy 1978), our main interest lies with the form these terms take when 44 is 
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curved with particular relevance to surface actions in quantum gravity (Christensen 
and Duff 1978). It appears that for this more general case the form for b~ in equation 
( 5 4  could be augmented by additional invariants (the author thanks Stuart Dowker 
for discussions on this point). The present flat A results would then only give certain 
algebraic relations between the coefficients of the invariants. The curved space case 
will be examined in a further publication along with fuller details on the calculations of 
$0 3 and 4. 
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